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Characters of log VOAs and quantum invariants

Motivation

Curious relationships between various quantum invariants of

knots/3-manifolds and characters of (log)VOAs have been discovered.

colored Jones polynomial of torus knots/links and characters of
Virasoro/singlet/triplet VOAs.
homological block of 3 or 4-fibered Seifert manifolds and
(1, p)/(p, p′)-logVOAs.

However, compared to the former, the latter theory is less well known.
It is important to construct a large number of interesting logVOAs and to
develop a unified methodology for study of them.

In particular, correspondence between knots/3-manifolds and logVOAs.

In this talk, I propose a clue to this problem by developing the geometric
calculation method of characters of (1, p)-logVOA proposed by
Feigin–Tipunin.
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Setting

p ∈ Z≥2, g: (ADE type) simple Lie algebra

Let us consider the finite parameter set

Λp := {
rankg∑
i=1

ri−1
p

ϖi | 1 ≤ ri ≤ p} ≃ 1
p
P/P

For λ ∈ 1
p
P , [λ] denotes the representative in Λp.

The Weyl group W acts on Λp by [λ] 7→ [σ ∗ λ], where
σ ∗ λ = σ(λ+ 1

p
ρ)− 1

p
ρ. Set

ϵ[λ](σ) =
1
p
(σ ∗ [λ]− [σ ∗ λ]) ∈ P

In other words, ϵ[λ](σ) is the “carry over” of the W -action.
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Felder complex

Definition (Felder complex)

We call the data (V[λ])[λ]∈Λp Felder complex if

V[λ]’s are weight B-modules with the grading
V[λ] =

⊕
∆∈∆[λ]+Z≥0

(V[λ])∆ compatible with the B-action.

There exists linear operators Q
[λ]
i : V[λ] → V[σi∗λ] such that

kerQ
[λ]
i admits the Pi-action.

For [λ] ̸∈ Λσi
p , we have

0 → kerQ
[λ]
i → V[λ] → kerQ

[σi∗λ]
i (ϵ[λ](σi)) → 0

as B-modules.

(More precisely, we need more parameters as Vλ̂;[λ], V±,λ̂;[λ],...)
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Characters of log VOAs and quantum invariants

Felder complex is illustrated as follows.
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Figure: Felder complex.
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0 → kerQ
[λ]
i︸ ︷︷ ︸⊕

k≥0 C2k+1⊗ 2k

↪→ LHS ↠
LHS

kerQ
[λ]
i︸ ︷︷ ︸

≃ kerQσi∗λ
i︸ ︷︷ ︸

⊕
k≥0 C2k+2⊗ 2k + 1

(ϵλ(σi))

→ 0.
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Q
[σi∗λ]
i

hi = 4 2 0 −2 −4 −6 5 3 1 −1 −3 −5

V[λ] V[σi∗λ]

0 → kerQ
[σi∗λ]
i︸ ︷︷ ︸⊕

k≥0 C2k+2⊗ 2k + 1

↪→ RHS ↠
RHS

kerQ
[σi∗λ]
i︸ ︷︷ ︸

≃ kerQ
[λ]
i︸ ︷︷ ︸

⊕
k≥0 C2k+1⊗ 2k

(ϵσj∗λ(σj))

→ 0.
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Feigin–Tipunin’s construction H0(G×B V[λ])

We call H0(G×B V[λ]) Feigin–Tipunin’s construction.

Theorem (S’21, S’22, Creutzig-Nakatsuka-S)

If (V[λ])[λ]∈Λp is a Felder complex, then we have

The evaluation map at id ∈ G/B gives

H0(G×B V[λ]) ↪→
rankg⋂
i=1

kerQ
[λ]
i ⊆ V[λ].

In particular, H0(G×B V[λ]) is isomorphic to the maximal G-submodule
of V[λ] and ↪→ above is ≃ iff [λ] is near to 0.

For β ∈ P+, we have chq V
h=σ◦β
[λ] = chq V

h=β−ϵ[λ](σ)

[σ∗λ]

(Borel–Weil–Bott type duality) If (p[λ] + ρ, θ) ≤ p, then we have
Hn(G×B V[λ]) ≃ Hn+l(w0)(G×B V[w0∗λ](−ρ)). In particular,
Hn>0(G×B V[λ]) = 0.
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chq V
h=σ◦β
[λ] = chq V

h=β−ϵ[λ](σ)

[σ∗λ]

In the case g = sl2, chq V
h=σ◦β
[λ] = chq V

h=β−ϵ[λ](σ)

[σ∗λ] is illustrated is follows.
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Figure: chq V
h=σ◦β
[λ] = chq V

h=β−ϵ[λ](σ)

[σ∗λ] for g = sl2.
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BWB duality

In the case g = sl2, BWB duality is proven as follows.

By applying the long exact sequence of H•(SL2 ×B −) to the short exact
sequence

0 → kerQ[λ] → V[λ] → kerQ[σ∗λ](−ϖ) → 0,

we have Hn(SL2 ×B V[λ]) ≃ δn,0 kerQ
[λ].

On the other hand, by applying the long exact sequence of
H•(SL2 ×B −) to the short exact sequence

0 → kerQ[σ∗λ](−ϖ) → V[σ∗λ](−ϖ) → kerQ[λ](−2ϖ) → 0,

we have Hn(SL2 ×B V[σ∗λ](−ϖ)) ≃ δn,1 kerQ
[λ].

Therefore, Hn(SL2 ×B V[λ]) ≃ Hn+1(SL2 ×B V[σ∗λ](−ϖ)).
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Felder complex and char > 0

Remark

Borel–Weil–Bott type duality above implies that the theory of Felder complex
and that of reductive algebraic group with char > 0 (or quantum group at root
of unity) are equivalent in some sense. In particular, it is expected that despite
the BWB duality above holds only for the case (p[λ] + ρ, θ) ≤ p, we have

Hn>0(G×B V[λ]) = 0

for any [λ] ∈ Λp because of the Kempf vanishing theorem in another side.
Moreover, by studying the counterparts of the results by Bezrukavnikov et al.,
we might be able to prove the log-Kazhdan-Lusztig corrspondence at the level
of abelian categories.
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Character formula by Atiyah–Bott formula

Let chq V be the character of V defined by

chq V =
∑
∆

dimV∆q∆.

Then we have

chq H
0(G×B V[λ]) =

∑
n≥0

(−1)n chq H
n(G×B V[λ])

=
∑

β∈P+

dimL(β)
∑
σ∈W

(−1)l(σ) chq V
h=σ◦β
[λ]

=
∑

β∈P+

dimL(β)
∑
σ∈W

(−1)l(σ) chq V
h=β−ϵ[λ](σ)

[σ∗λ] ,

i.e. chq H
0(G×B V[λ]) is reduced to chq V

h=β−ϵ[λ](σ)

[σ∗λ] .
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Example: (1, p)-logVOA for (g, fprin)

V√
pQ: lattice VOA assoc to the rescaled root lattice

√
pQ

The conformal vector is given by

ω := 1
2

∑
1≤i,j≤rankg

cijαi(−1)αj +
√
p(1− 1

p
)ρ(−2)1.

V[λ] = V√
p(Q−λ̂)+[λ], λ̂: minuscle weight

The B-module structure on V[λ] is given by

fi =

∫
e
√
pαidz, hi = ⌈− 1

p
αi(0)⌉

The linear operator Q
[λ]
i is the short screening operator

Q
[λ]
i =

∫
e
− 1√

p
αi
(z1) · · · e

− 1√
p
αi
(z(p[λ]+ρ,αi))dz⃗

We call H0(G×B V√
pQ) the (1, p)-logVOA for (g, fprin).
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Example: (1, p)-logVOA for (g, fprin)

Then (V[λ])[λ]∈Λp consists a Felder complex and we have the following.

Theorem (S’21, S’22)

H0(G×B V[λ]) ↪→
⋂rankg

i=1 kerQ
[λ]
i and it is isomorphic iff [λ] is near to 0.

In particular, two definitions of (1, p)-logVOA coincides.

H0(G×B V[λ]) ≃
⊕

β∈P+
L(β)⊗Wβ+[λ], where Wβ+[λ] is a W0-module

with l.w. ∆β+[λ]. Note that Wp−h(g) is a sub VOA of W0.

(For (p[λ] + ρ, θ) ≤ p) we have

chq H
0(G×B V[λ]) =

1
η(q)rankg

∑
β∈P+

dimL(β)
∑
σ∈W

(−1)l(σ)q∆−√
pβ+σ∗[λ] .

For (p[λ] + ρ, θ) ≤ p, H0(G×B V[λ]) is simple as (1, p)-logVOA module
and each Wβ+[λ] so is as Wp−h(g)-modules.
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Example: (1, p)-logVOA for (sl2, 0)

V k(sl2) ↪→ βγ ⊗ V√
pA1 ↪→ Π[0]⊗ V√

pA1

V[r] ∈ {βγ ⊗ Vr,s, τ(Π[ r
p
]⊗ Vr,s), Π[b]⊗ Vr,s | [b] ̸= [0], [ r

p
]}

The B-module structure on V[r] is given by

f =

∫
β ⊗ e

√
pαdz, h = ⌈− 1√

p
α(0) +

1
p
(u+ v)(0))⌉

and the grading is the conformal one.

The linear operator is the short screening operator

Q[r] =

∫
Πr

i=1e
− 1√

p
α+

1
p
(u+v)

(zi)dz⃗

We call H0(SL2 ×B βγ ⊗ V√
pA1) the (1, p)-logVOA for (sl2, 0).
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Example: (1, p)-logVOA for (sl2, 0)

Then (V[r])1≤r≤p consists a Felder complex and we have the following:

Theorem (Creutzig-Nakatsuka-S)

H0(G×B V[r]) ≃ kerQ[r].

(SL2, V
k(sl2))-module structure on H0(G×B V[r]).

BWB duality and character formula (two variables).

simplicity theorem.

The same type results would be hold for general (1, p)-logVOA for (g, f).
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Beyond (1, p)-logVOAs?

From the results above, certain aspects of the representation theory and
structure of (1, p)-logVOA are controlled by the theory of Felder complex,
which is essentially not a issue on VOA, but simple Lie algebra/group (put more
simply, sl2). In other words, regardless of the complexity of the specific form of
the VOA-modules, B-action, etc., its representation theory can be studied.

Question

Is the theory of Felder complex used to study other logVOAs?
In other words, how fundamental a position does the theory of (1, p)-logVOA
occupy in the that of logVOAs?
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Example: (p1, p2)-logVOA for (sl2, fprin)

p1, p2 ∈ Z≥2: coprime, p := p1p2

V√
pA1 is the lattice VOA with the conformal vector

1
4
α(−1)α+

√
p( 1

p1
− 1

p2
)ρ(−2)1

V[r1],[r2] := V√
p(A1−λ̂)−[r1]+[r2]

, where [r1] ∈ Λp1 and [r1] ∈ Λp2 .

The linear operators

Q[r1] : V[r1],[r2] → V[p1−r1],[r2], Q[r2] : V[r1],[r2] → V[r1],[p2−r2]

are short screening operators.

V[r1],[r2] does not consists a Felder complex, but ImQ[p1−r1] ⊊ V[r1],[r2]

consists a Felder complex with the B-action definined by Frobenius
homomorphism.
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The socle sequence of V[r1],[r2] is illustrated as
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k , k , k , k : simple U(L)-modules
Lp1−r1,r2,−k, Lr1,r2,−k, Lp1−r1,p2−r2,−k, Lr1,p2−r2,−k, respectively.

M0 ⊋ M1 ⊋ M2, where
M0/M1 = k , M1/M2 = k ⊕ k , M3 = k .

If we exchange r1 with p1 − r1 (resp.r2 with p2 − r2), then the colors also
exchange.
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The socle sequence of ImQ[p1−r1] is illustrated as

1

2

3

4

5

3

4

55

2

3

4

5

4

5

4 2 0 −2 −4

2

3

4

5

4

5

1

2

3

4

5

3

4

5

3 1 −1 −3

They consist a Felder complex by the B-action by the Frobenius
homomorphism and the remaining short screening operator Q[r2].

In particular, by taking H0(SL2 ×B −), only k remains, which consists
the simple module X[r1],[r2] of the (p1, p2)-logVOA.

In particular, we can reduce chq X[r1],[r2] to chq ImQ[r1]≥0.
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Question

Can we calculate chq ImQ[r1]≥0 using Felder complex (or Atiyah–Bott)?

Let us consider a L(cp1,p2 , 0)-module Ṽ[r1],[r2] illustrated as
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3 1 −1 −3

I don’t know the socle sequence, but the composition factors are

supposed to be given as above. i.e. add k and k − 1 to V h=−k<0
[r1],[r2]

.

For a makeshift definition of Ṽ[r1],[r2], see [Hikami-S].

Then they has the shape of Felder complex by regarding the pairs ( k ,

k + 1 ) and ( k , k + 1 ) as weight vectors.
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Calculation on chq X[r1],[r2]

Using this Ṽ[r1],[r2], let us calculate chq X[r1],[r2] using Felder complex (or
Atiyah–Bott formula).
Let us recall that the socle sequence of V[p1−r1],[r2] is given as follows.
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h = 3 1 −1 −3
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Then Ṽ[p1−r1],[r2] has the shape as follows.
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Ṽ[p1−r1],[r2]
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H0(G×B Ṽ[p1−r1],[r2])

By taking H0(SL2 ×B −), we obtain the following.
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H̃0(G×B Ṽ[r1],[r2]) := ImQ[p1−r1]

Set H̃0(SL2 ×B Ṽ[r1],[r2]) := ImQ[p1−r1], which is illustrated as
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h = 4 2 0 −2 −4

Then we have

chq H̃
0(SL2 ×B Ṽ[r1],[r2])

h=kϖ = chq H
0(SL2 ×B Ṽ[p1−r1],[r2])

h=(k+1)ϖ
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H0(G×B H̃0(G×B Ṽ[r1],[r2]))

Since H̃0(SL2 ×B V[r1],[r2]) consists a Felder complex again, we take

H0(SL2 ×B −) and obtain X[r1],[r2] = H0(SL2 ×B H̃0(SL2 ×B V[r1],[r2])).
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Indeed, we have

η(q) chq H
0(SL2 ×B H̃0(SL2 × Ṽ[r1],[r2]))

h=0

=
∑
n2≥0

(chq H̃
0(SL2 ×B Ṽ[r1],[r2])

h=2n2 − chq H̃
0(SL2 ×B Ṽ[r1],[p2−r2])

h=2n2+1)

=
∑
n2≥0

(chq H̃
0(SL2 ×B Ṽ[p1−r1],[r2])

h=2n2+1 − chq H̃
0(SL2 ×B Ṽ[p1−r1],[p2−r2])

h=2n2+2)

=
∑

n1,n2≥0

(chq Ṽ
h=2n1+2n2+1
[p1−r1],[r2]

− chq Ṽ
h=2n1+2n2+2
[p1−r1],[p2−r2]

)

− (chq Ṽ
h=2n1+2n2+2
[r1],[r2]

− chq Ṽ
h=2n1+2n2+3
[r1],[p2−r2]

)

=
∑
n≥0

n(q∆p1−r1,r2,2n+1 − q∆p1−r1,p2−r2,2n+2 − q∆r1,r2,2n+2 + q∆r1,p2−r2,2n+3)

and it coinsides with chq X h=0
[r1],[r2]

.
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(1, p1p2)-logVOA v.s. (p1, p2)-logVOA

In the case of (1, p1p2)-logVOA, there is only one parameter [λ] ∈ Λp1p2 ,
and we consider the Felder complex w.r.t this [λ].

On the other hand, in the case of (p1, p2)-logVOA, there are two
parameters [λ1] ∈ Λp1 and [λ2] ∈ Λp2 , and we apply the theory of Felder
complex (or Atiyah–Bott character formula) to [λ1] and [λ2] separately.

These two Felder complexes are related by the “symmetrization of Felder
complex”

chq H̃
0(G×B Ṽ )h=k≥0 = chq H

0(G×B Ṽ )h=k+1

above, and it enables us to the nested-use of Atiyah–Bott character
formulae.

These discussions also holds for

([λ1], . . . , [λN ]) ∈ Λp1 × · · · × ΛpN
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Nested Felder complex/Feigin–Tipunin’s construction

From the above discussion, it is natural to consider the following.

p1, . . . , pN ∈ Z≥2: coprime, p := p1 · · · pN .

Q0 := 1
p1

− 1
p2

− · · · − 1
pN

.

V√
pQ: lattice VOA with conformal vector

ω := 1
2

∑
1≤i,j≤rankg

cijαi(−1)αj +
√
pQ0ρ(−2)1.

For [λi] ∈ Λpi , set

λ⃗ = ([λ1], . . . , [λN ]) ∈ Λp1 × · · · × ΛpN

Vλ⃗ := V√
p(Q−λ̂)+

√
p(−λ1+λ2···+λN ): simple V√

pQ-module

(λ̂; minuscle weight).
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Definition (Nested Felder complex/Feigin–Tipunin’s construction)

We call (H̃0(G×B · · · H̃0(G×B︸ ︷︷ ︸
0≤m≤N−1

Ṽλ⃗ · · · ))[λ⃗]∈Λp
nested Felder complex if

For each 0 ≤ m ≤ N − 1, H̃0(G×B · · · H̃0(G×B︸ ︷︷ ︸
m

Ṽ...,[λN−m],...
· · · )

consists a Felder complex.

For β ∈ P+ and σ ∈ W , we have

• chq Ṽ
h=β−ϵ[λN ](σ)

λ⃗
= chq V

h=β

λ⃗
,

• chq H̃
0(G×B Ṽ[λ1],...)

h=β = chq H̃
0(G×B Ṽ[w0∗λ1],...)

h=β+ρ,

• chq H̃
0(G×B · · · H̃0(G×B︸ ︷︷ ︸

m≥2

Ṽλ⃗ · · · )h=β−ϵ[λN−m](σ)

=chq H
0(G×B H̃0(G×B · · · H̃0(G×B︸ ︷︷ ︸

m−1

Ṽλ⃗ · · · )h=β−ϵ[λN−m](σ)+ρ
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The second condition above is “symmetrization of Felder complex” or
“connection of Felder complex w.r.t [λm] and that w.r.t [λm−1]”.
Let us recall that a Felder complex is illustreted as
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Then the second condition is illustrated is follows.
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Figure: H̃0(G×B V ) and H0(G×B V ).
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As we see in the case of N = 2 (i.e. (p1, p2)-logVOA), if we regard the pair

( k , k + 1 ) (or ( k , k + 1 ) ) as weight vectors, then these pictures are
regarded as the maximal G-submodule of a (larger) Felder complex.
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In the same manner as N = 2, we obtain the character formula.

Theorem (S)

We have the character formula

η(q)rankg chq H
0(G×B H̃0(G×B · · · H̃0(G×B︸ ︷︷ ︸

N−1

Ṽλ̂;λ1,...,λN
) · · · )h=λ̂

=
∑

γ1,...,γN≥0

p(γ1) · · · p(γN )
∑

w1,...,wN∈W

(−1)l(w1)+···+l(wN )

chq V
h=γ1+···+γN+λ̂+(N−1)ρ−ϵw0∗λ1

(w1)−
∑N

i=2 ϵλi
(wi)

w1∗w0∗λ1,w2∗λ2,...,wN∗λN
,

where p(−) is the Kostant’s partition function.

In particular, when g = sl2 and λ̂ = 0, the character is given by

∑
n≥0

(
n+N − 1

N − 1

) ∑
ϵ1,...,ϵN∈{±1}

ϵ1 · · · ϵNq
p
4
(2n+N−

∑N
i=1

ϵiri
pi

)
,

which coincides with the homological block of (N + 2)-fibered Seifert manifold!
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Conclusion

When g = sl2, chq H
0(G×B H̃0(G×B · · · )) is calculated as

First, we decompose the Fock spaces to 2N types of colors/components.

We can decompose the colors as 2N = 2N−1 + 2N−1, where the first
2N−1 colors appear symmetric w.r.t. Cartan weight h, but the latter is
shifted by −1. In other words, we obtain a Felder complex w.r.t [λN ].

By applying H0(G×B −), only 2N−1 colors that are symmetric w.r.t the
Cartan weight h are taken out.

In h ≥ 0, it has the same character as a Felder complex w.r.t [λN−1]
consisting of 2N−1 = 2N−2 + 2N−2 colors. So we can compute the
character by applying H0(G×B −) again (in other words, by taking
2N−2 colors that are syemmetric w.r.t the Cartan weight h, again).

By repeating this procedure, we can take out only one color, which is the
desired logVOA(-module) of the form

“H0(G×B H0(G×B · · ·H0(G×B Ṽλ⃗ · · · )”
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Future work (1)

Let us recall the question above.

Question

Is the theory of Felder complex used to study other logVOAs?
In other words, how fundamental a position does the theory of (1, p)-logVOA
occupy in the that of logVOAs?

The following conjecture claims that the theory of Felder
complex/(1, p)-logVOA is fundamental in that of conjectural logVOAs
corresponding to (Seifert/plumbed) 3-manifolds.

Conjecture

There exists logVOA(-modules)

H0(G×B H̃0(G×B · · · H̃0(G×B Ṽλ⃗ · · · )

(i.e. given by nested Feigin–Tipunin construction) such that the character
coincides with the homological block of corresponding Seifert manifold.
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Future work (2)

For c ≤ r, the limit of slr-colored Jones polynomial of the torus link
T (c, cp) gives the character of (1, p)-logVOA for (slc, fprin).

On the other hand, the limits of sl2-colored Jones polynomial of the torus
link T (2p, 2p′) (minus certain modular form) gives the character of
(p, p′)-logVOA for (sl2, fprin).

So it is expected that the limits of slr-colored Jones polynomial of the
torus link T (cp, cp′) (minus certain modular form) gives the character of
(p, p′)-logVOA for (slc, fprin), but (p, p

′)-logVOA is constructed only for
the case r = 2.
However, we can expect the character of (irreducible modules of)
(p, p′)-logVOA for (g, fprin) is given by

∑
γ1,γ2≥0

p(γ1)p(γ2)
∑

w1,w2∈W

(−1)
l(w1)+l(w2)

chq V
h=γ1+γ2+λ̂+ρ−ϵ[w0∗λ1](w1)−ϵ[λ2](w2)

w1∗w0∗λ1,w2∗λ2
,

and thus we can check the expectation above.
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Thank you!
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