Characters of \log VOAs and quantum invariants

Shoma Sugimoto

Kyushu University

June 29, 2023

Motivation

- Curious relationships between various quantum invariants of knots/3-manifolds and characters of (log)VOAs have been discovered.

■ colored Jones polynomial of torus knots/links and characters of Virasoro/singlet/triplet VOAs.
■ homological block of 3 or 4 -fibered Seifert manifolds and $(1, p) /\left(p, p^{\prime}\right)$-logVOAs.

- However, compared to the former, the latter theory is less well known. It is important to construct a large number of interesting $\log \mathrm{VOAs}$ and to develop a unified methodology for study of them.
In particular, correspondence between knots/3-manifolds and $\log V O A s$.
■ In this talk, I propose a clue to this problem by developing the geometric calculation method of characters of $(1, p)$-logVOA proposed by Feigin-Tipunin.

Setting

■ $p \in \mathbb{Z}_{\geq 2}$, \mathfrak{g} : (ADE type) simple Lie algebra

- Let us consider the finite parameter set

$$
\Lambda_{p}:=\left\{\left.\sum_{i=1}^{\text {rankg }} \frac{r_{i}-1}{p} \varpi_{i} \right\rvert\, 1 \leq r_{i} \leq p\right\} \simeq \frac{1}{p} P / P
$$

For $\lambda \in \frac{1}{p} P,[\lambda]$ denotes the representative in Λ_{p}.

- The Weyl group W acts on Λ_{p} by $[\lambda] \mapsto[\sigma * \lambda]$, where $\sigma * \lambda=\sigma\left(\lambda+\frac{1}{p} \rho\right)-\frac{1}{p} \rho$. Set

$$
\epsilon_{[\lambda]}(\sigma)=\frac{1}{p}(\sigma *[\lambda]-[\sigma * \lambda]) \in P
$$

In other words, $\epsilon_{[\lambda]}(\sigma)$ is the "carry over" of the W-action.

Felder complex

Definition (Felder complex)

We call the data $\left(V_{[\lambda]}\right)_{[\lambda] \in \Lambda_{p}}$ Felder complex if

- $V_{[\lambda]}$'s are weight B-modules with the grading
$V_{[\lambda]}=\bigoplus_{\Delta \in \Delta_{[\lambda]+\mathbb{Z}_{\geq 0}}}\left(V_{[\lambda]}\right)_{\Delta}$ compatible with the B-action.
- There exists linear operators $Q_{i}^{[\lambda]}: V_{[\lambda]} \rightarrow V_{\left[\sigma_{i} * \lambda\right]}$ such that

■ $\operatorname{ker} Q_{i}^{[\lambda]}$ admits the P_{i}-action.

- For $[\lambda] \notin \Lambda_{p}^{\sigma_{i}}$, we have

$$
0 \rightarrow \operatorname{ker} Q_{i}^{[\lambda]} \rightarrow V_{[\lambda]} \rightarrow \operatorname{ker} Q_{i}^{\left[\sigma_{i} * \lambda\right]}\left(\epsilon_{[\lambda]}\left(\sigma_{i}\right)\right) \rightarrow 0
$$

as B-modules.
(More precisely, we need more parameters as $V_{\hat{\lambda} ;[\lambda]}, V_{ \pm, \hat{\lambda} ;[\lambda]}, \ldots$)

Felder complex is illustrated as follows.

Figure: Felder complex.

$$
\begin{aligned}
& V_{[\lambda]} \\
& 0 \\
& 1 \rightarrow 1 \\
& 2 \rightarrow 2 \rightarrow 2 \\
& 3 \rightarrow \sqrt{3} \rightarrow 3 \rightarrow \sqrt{3} \\
& 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \\
& 5 \rightarrow \sqrt{5} \rightarrow \sqrt{5} \rightarrow \sqrt{5} \rightarrow \sqrt{5} \\
& h_{i}=4 \quad 2 \quad 0 \quad-2 \quad-4 \quad-6
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow \underbrace{\operatorname{ker} Q_{i}^{[\lambda]}}_{\oplus_{k \geq 0} \mathrm{C}^{2 k+1} \otimes 2 k} \hookrightarrow \text { LHS } \rightarrow \\
& \simeq \underbrace{\underbrace{\frac{\mathrm{LHS}}{\operatorname{ker} Q_{i}^{\sigma_{i} * \lambda}}}_{\left(\epsilon_{\lambda}\left(\sigma_{i}\right)\right)} \rightarrow 0 .}_{\oplus_{k \geq 0}{ }^{\mathrm{C}^{2 k+2} \otimes 2 k+1}}
\end{aligned}
$$

Feigin-Tipunin's construction $H^{0}\left(G \times_{B} V_{(\lambda)}\right)$

We call $H^{0}\left(G \times_{B} V_{[\lambda]}\right)$ Feigin-Tipunin's construction.
Theorem (S'21, S'22, Creutzig-Nakatsuka-S)
If $\left(V_{[\lambda]}\right)_{[\lambda] \in \Lambda_{p}}$ is a Felder complex, then we have

- The evaluation map at $\mathrm{id} \in G / B$ gives

$$
H^{0}\left(G \times_{B} V_{[\lambda]}\right) \hookrightarrow \bigcap_{i=1}^{\text {rankg }} \operatorname{ker} Q_{i}^{[\lambda]} \subseteq V_{[\lambda]}
$$

In particular, $H^{0}\left(G \times_{B} V_{[\lambda]}\right)$ is isomorphic to the maximal G-submodule of $V_{[\lambda]}$ and \hookrightarrow above is \simeq iff $[\lambda]$ is near to 0 .

- For $\beta \in P_{+}$, we have $\operatorname{ch}_{q} V_{[\lambda]}^{h=\sigma \circ \beta}=\operatorname{ch}_{q} V_{[\sigma * \lambda]}^{h=\beta-\epsilon}[\lambda](\sigma)$
- (Borel-Weil-Bott type duality) If $(p[\lambda]+\rho, \theta) \leq p$, then we have $H^{n}\left(G \times_{B} V_{[\lambda]}\right) \simeq H^{n+l\left(w_{0}\right)}\left(G \times_{B} V_{\left[w_{0} * \lambda\right]}(-\rho)\right)$. In particular, $H^{n>0}\left(G \times_{B} V_{[\lambda]}\right)=0$.
$\operatorname{ch}_{q} V_{[\lambda]}^{h=\sigma \circ \beta}=\operatorname{ch}_{q} V_{[\sigma * \lambda]}^{h=\beta-\epsilon_{[\lambda]}(\sigma)}$
In the case $\mathfrak{g}=\mathfrak{s l}_{2}, \operatorname{ch}_{q} V_{[\lambda]}^{h=\sigma \circ \beta}=\operatorname{ch}_{q} V_{[\sigma * \lambda]}^{h=\beta-\epsilon_{[\lambda]}(\sigma)}$ is illustrated is follows.

$$
\begin{aligned}
& V_{[\lambda]} \\
& V_{\left[\sigma_{i} * \lambda\right]} \\
& 0 \\
& 0 \\
& 1 \rightarrow 1 \\
& 1 \rightarrow 1 \\
& 2 \rightarrow 2 \rightarrow 2 \\
& 3 \rightarrow 3 \rightarrow 3 \rightarrow 3 \\
& 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \quad Q_{i}^{\left[\sigma_{i} * \lambda\right]} \quad 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 4 \\
& 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 \quad 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 \\
& \begin{array}{lllllllllllll}
h_{i} & =4 & 2 & 0 & -2 & -4 & -6 & 5 & 3 & 1 & -1 & -3 & -5
\end{array}
\end{aligned}
$$

Figure: $\operatorname{ch}_{q} V_{[\lambda]}^{h=\sigma \circ \beta}=\operatorname{ch}_{q} V_{[\sigma * \lambda]}^{h=\beta-\epsilon_{[\lambda]}(\sigma)}$ for $\mathfrak{g}=\mathfrak{s l}_{2}$.

BWB duality

In the case $\mathfrak{g}=\mathfrak{s l}_{2}$, BWB duality is proven as follows.

- By applying the long exact sequence of $H^{\bullet}\left(\mathrm{SL}_{2} \times{ }_{B}-\right)$ to the short exact sequence

$$
0 \rightarrow \operatorname{ker} Q^{[\lambda]} \rightarrow V_{[\lambda]} \rightarrow \operatorname{ker} Q^{[\sigma * \lambda]}(-\varpi) \rightarrow 0
$$

we have $H^{n}\left(\mathrm{SL}_{2} \times_{B} V_{[\lambda]}\right) \simeq \delta_{n, 0} \operatorname{ker} Q^{[\lambda]}$.

- On the other hand, by applying the long exact sequence of $H^{\bullet}\left(\mathrm{SL}_{2} \times{ }_{B}-\right)$ to the short exact sequence

$$
0 \rightarrow \operatorname{ker} Q^{[\sigma * \lambda]}(-\varpi) \rightarrow V_{[\sigma * \lambda]}(-\varpi) \rightarrow \operatorname{ker} Q^{[\lambda]}(-2 \varpi) \rightarrow 0
$$

we have $H^{n}\left(\mathrm{SL}_{2} \times_{B} V_{[\sigma * \lambda]}(-\varpi)\right) \simeq \delta_{n, 1} \operatorname{ker} Q^{[\lambda]}$.

- Therefore, $H^{n}\left(\mathrm{SL}_{2} \times_{B} V_{[\lambda]}\right) \simeq H^{n+1}\left(\mathrm{SL}_{2} \times_{B} V_{[\sigma * \lambda]}(-\varpi)\right)$.

Felder complex and char > 0

Remark

Borel-Weil-Bott type duality above implies that the theory of Felder complex and that of reductive algebraic group with char >0 (or quantum group at root of unity) are equivalent in some sense. In particular, it is expected that despite the BWB duality above holds only for the case $(p[\lambda]+\rho, \theta) \leq p$, we have

$$
H^{n>0}\left(G \times_{B} V_{[\lambda]}\right)=0
$$

for any $[\lambda] \in \Lambda_{p}$ because of the Kempf vanishing theorem in another side. Moreover, by studying the counterparts of the results by Bezrukavnikov et al., we might be able to prove the log-Kazhdan-Lusztig corrspondence at the level of abelian categories.

Character formula by Atiyah-Bott formula

Let $\mathrm{ch}_{q} V$ be the character of V defined by

$$
\operatorname{ch}_{q} V=\sum_{\Delta} \operatorname{dim} V_{\Delta} q^{\Delta}
$$

Then we have

$$
\begin{aligned}
\operatorname{ch}_{q} H^{0}\left(G \times_{B} V_{[\lambda]}\right) & =\sum_{n \geq 0}(-1)^{n} \operatorname{ch}_{q} H^{n}\left(G \times_{B} V_{[\lambda]}\right) \\
& =\sum_{\beta \in P_{+}} \operatorname{dim} L(\beta) \sum_{\sigma \in W}(-1)^{l(\sigma)} \operatorname{ch}_{q} V_{[\lambda]}^{h=\sigma \circ \beta} \\
& =\sum_{\beta \in P_{+}} \operatorname{dim} L(\beta) \sum_{\sigma \in W}(-1)^{l(\sigma)} \operatorname{ch}_{q} V_{[\sigma * \lambda]}^{h=\beta-\epsilon[\lambda]}(\sigma)
\end{aligned}
$$

i.e. $\operatorname{ch}_{q} H^{0}\left(G \times_{B} V_{[\lambda]}\right)$ is reduced to $\operatorname{ch}_{q} V_{[\sigma * \lambda]}^{h=\beta-\epsilon_{[\lambda]}(\sigma)}$.

Example: $(1, p)-\log \mathrm{VOA}$ for $\left(\mathfrak{g}, f_{\text {prin }}\right)$

- $V_{\sqrt{p} Q}$: lattice VOA assoc to the rescaled root lattice $\sqrt{p} Q$
- The conformal vector is given by

$$
\omega:=\frac{1}{2} \sum_{1 \leq i, j \leq \mathrm{rankg}} c^{i j} \alpha_{i(-1)} \alpha_{j}+\sqrt{p}\left(1-\frac{1}{p}\right) \rho_{(-2)} \mathbf{1} .
$$

- $V_{[\lambda]}=V_{\sqrt{p}(Q-\hat{\lambda})+[\lambda]}, \quad \hat{\lambda}$: minuscle weight
- The B-module structure on $V_{[\lambda]}$ is given by

$$
f_{i}=\int e^{\sqrt{p} \alpha_{i}} d z, \quad h_{i}=\left\lceil-\frac{1}{p} \alpha_{i}(0)\right\rceil
$$

- The linear operator $Q_{i}^{[\lambda]}$ is the short screening operator

$$
Q_{i}^{[\lambda]}=\int e^{-\frac{1}{\sqrt{p}} \alpha_{i}}\left(z_{1}\right) \cdots e^{-\frac{1}{\sqrt{p}} \alpha_{i}}\left(z_{\left(p[\lambda]+\rho, \alpha_{i}\right)}\right) d \vec{z}
$$

■ We call $H^{0}\left(G \times_{B} V_{\sqrt{p} Q}\right)$ the $(1, p)-\log$ VOA for $\left(\mathfrak{g}, f_{\text {prin }}\right)$.

Example: $(1, p)-\log \mathrm{VOA}$ for $\left(\mathfrak{g}, f_{\text {prin }}\right)$

Then $\left(V_{[\lambda]}\right)_{[\lambda] \in \Lambda_{p}}$ consists a Felder complex and we have the following.

Theorem (S'21, S'22)

- $H^{0}\left(G \times_{B} V_{[\lambda]}\right) \hookrightarrow \bigcap_{i=1}^{\mathrm{rankg}} \operatorname{ker} Q_{i}^{[\lambda]}$ and it is isomorphic iff $[\lambda]$ is near to 0 . In particular, two definitions of $(1, p)-\log V O A$ coincides.
- $H^{0}\left(G \times_{B} V_{[\lambda]}\right) \simeq \bigoplus_{\beta \in P_{+}} L(\beta) \otimes \mathcal{W}_{\beta+[\lambda]}$, where $\mathcal{W}_{\beta+[\lambda]}$ is a \mathcal{W}_{0}-module with I.w. $\Delta_{\beta+[\lambda]}$. Note that $\mathcal{W}^{p-h}(\mathfrak{g})$ is a sub VOA of \mathcal{W}_{0}.
- (For $(p[\lambda]+\rho, \theta) \leq p)$ we have

$$
\operatorname{ch}_{q} H^{0}\left(G \times_{B} V_{[\lambda]}\right)=\frac{1}{\eta(q)^{\mathrm{rankg}}} \sum_{\beta \in P_{+}} \operatorname{dim} L(\beta) \sum_{\sigma \in W}(-1)^{l(\sigma)} q^{\Delta_{-\sqrt{p} \beta+\sigma *[\lambda]}} .
$$

- For $(p[\lambda]+\rho, \theta) \leq p, H^{0}\left(G \times_{B} V_{[\lambda]}\right)$ is simple as $(1, p)-\log V O A$ module and each $\mathcal{W}_{\beta+[\lambda]}$ so is as $\mathcal{W}^{p-h}(\mathfrak{g})$-modules.

Example: $(1, p)$-logVOA for $\left(\mathfrak{s l}_{2}, 0\right)$

■ $V^{k}\left(\mathfrak{s l}_{2}\right) \hookrightarrow \beta \gamma \otimes V_{\sqrt{p} \mathrm{~A}_{1}} \hookrightarrow \Pi[0] \otimes V_{\sqrt{p} \mathrm{~A}_{1}}$

- $V_{[r]} \in\left\{\beta \gamma \otimes V_{r, s}, \tau\left(\Pi\left[\frac{r}{p}\right] \otimes V_{r, s}\right), \Pi[b] \otimes V_{r, s} \mid[b] \neq[0],\left[\frac{r}{p}\right]\right\}$

■ The B-module structure on $V_{[r]}$ is given by

$$
\left.f=\int \beta \otimes e^{\sqrt{p} \alpha} d z, h=\left\lceil-\frac{1}{\sqrt{p}} \alpha_{(0)}+\frac{1}{p}(u+v)_{(0)}\right)\right\rceil
$$

and the grading is the conformal one.

- The linear operator is the short screening operator

$$
Q^{[r]}=\int \Pi_{i=1}^{r} e^{-\frac{1}{\sqrt{p}} \alpha+\frac{1}{p}(u+v)}\left(z_{i}\right) d \vec{z}
$$

- We call $H^{0}\left(\mathrm{SL}_{2} \times_{B} \beta \gamma \otimes V_{\sqrt{p} \mathrm{~A}_{1}}\right)$ the $(1, p)-\log \mathrm{VOA}$ for $\left(\mathfrak{s l}_{2}, 0\right)$.

Example: $(1, p)$-logVOA for $\left(\mathfrak{s l}_{2}, 0\right)$

Then $\left(V_{[r]}\right)_{1 \leq r \leq p}$ consists a Felder complex and we have the following:
Theorem (Creutzig-Nakatsuka-S)

- $H^{0}\left(G \times_{B} V_{[r]}\right) \simeq \operatorname{ker} Q^{[r]}$.
- $\left(\mathrm{SL}_{2}, V^{k}\left(\mathfrak{s l}_{2}\right)\right)$-module structure on $H^{0}\left(G \times_{B} V_{[r]}\right)$.
- BWB duality and character formula (two variables).
- simplicity theorem.

The same type results would be hold for general $(1, p)-\log V O A$ for (\mathfrak{g}, f).

Beyond $(1, p)$-logVOAs?

From the results above, certain aspects of the representation theory and structure of $(1, p)-\log \mathrm{VOA}$ are controlled by the theory of Felder complex, which is essentially not a issue on VOA, but simple Lie algebra/group (put more simply, $\mathfrak{s l}_{2}$). In other words, regardless of the complexity of the specific form of the VOA-modules, B-action, etc., its representation theory can be studied.

Question

Is the theory of Felder complex used to study other logVOAs?
In other words, how fundamental a position does the theory of $(1, p)-\log V O A$ occupy in the that of $\log V O A s ?$

Example: $\left(p_{1}, p_{2}\right)-\log \mathrm{VOA}$ for $\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right)$

- $p_{1}, p_{2} \in \mathbb{Z}_{\geq 2}$: coprime, $\quad p:=p_{1} p_{2}$
- $V_{\sqrt{p} \mathrm{~A}_{1}}$ is the lattice VOA with the conformal vector

$$
\frac{1}{4} \alpha_{(-1)} \alpha+\sqrt{p}\left(\frac{1}{p_{1}}-\frac{1}{p_{2}}\right) \rho_{(-2)} \mathbf{1}
$$

- $V_{\left[r_{1}\right],\left[r_{2}\right]}:=V_{\sqrt{p}\left(\mathrm{~A}_{1}-\hat{\lambda}\right)-\left[r_{1}\right]+\left[r_{2}\right]}$, where $\left[r_{1}\right] \in \Lambda_{p_{1}}$ and $\left[r_{1}\right] \in \Lambda_{p_{2}}$.
- The linear operators

$$
Q^{\left[r_{1}\right]}: V_{\left[r_{1}\right],\left[r_{2}\right]} \rightarrow V_{\left[p_{1}-r_{1}\right],\left[r_{2}\right]}, \quad Q^{\left[r_{2}\right]}: V_{\left[r_{1}\right],\left[r_{2}\right]} \rightarrow V_{\left[r_{1}\right],\left[p_{2}-r_{2}\right]}
$$

are short screening operators.

- $V_{\left[r_{1}\right],\left[r_{2}\right]}$ does not consists a Felder complex, but $\operatorname{Im} Q^{\left[p_{1}-r_{1}\right]} \subsetneq V_{\left[r_{1}\right],\left[r_{2}\right]}$ consists a Felder complex with the B-action definined by Frobenius homomorphism.

The socle sequence of $V_{\left[r_{1}\right],\left[r_{2}\right]}$ is illustrated as

- k, k, k, k : simple $U(L)$-modules $L_{p_{1}-r_{1}, r_{2},-k}, L_{r_{1}, r_{2},-k}, L_{p_{1}-r_{1}, p_{2}-r_{2},-k}, L_{r_{1}, p_{2}-r_{2},-k}$, respectively.
- $M_{0} \supsetneq M_{1} \supsetneq M_{2}$, where $M_{0} / M_{1}=k, M_{1} / M_{2}=k \oplus k, M_{3}=k$.
- If we exchange r_{1} with $p_{1}-r_{1}$ (resp. r_{2} with $p_{2}-r_{2}$), then the colors also exchange.

The socle sequence of $\operatorname{Im} Q^{\left[p_{1}-r_{1}\right]}$ is illustrated as

- They consist a Felder complex by the B-action by the Frobenius homomorphism and the remaining short screening operator $Q^{\left[r_{2}\right]}$.
- In particular, by taking $H^{0}\left(\mathrm{SL}_{2} \times_{B}-\right)$, only k remains, which consists the simple module $\mathcal{X}_{\left[r_{1}\right],\left[r_{2}\right]}$ of the $\left(p_{1}, p_{2}\right)-\log \mathrm{VOA}$. In particular, we can reduce $\operatorname{ch}_{q} \mathcal{X}_{\left[r_{1}\right],\left[r_{2}\right]}$ to $\operatorname{ch}_{q} \operatorname{Im} Q^{\left[r_{1}\right] \geq 0}$.

Question

Can we calculate $\mathrm{ch}_{q} \operatorname{Im} Q^{\left[r_{1}\right] \geq 0}$ using Felder complex (or Atiyah-Bott)?
Let us consider a $L\left(c_{p_{1}, p_{2}}, 0\right)$-module $\tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}$ illustrated as

- I don't know the socle sequence, but the composition factors are supposed to be given as above. i.e. add k and $k-1$ to $V_{\left[r_{1}\right],\left[r_{2}\right]}^{h=-k<0}$. For a makeshift definition of $\tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}$, see [Hikami-S].
- Then they has the shape of Felder complex by regarding the pairs (k, $k+1)$ and ($k, k+1$) as weight vectors.

Calculation on $\operatorname{ch}_{q} \mathcal{X}_{\left[r_{1}\right],\left[r_{2}\right]}$

Using this $\tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}$, let us calculate $\operatorname{ch}_{q} \mathcal{X}_{\left[r_{1}\right],\left[r_{2}\right]}$ using Felder complex (or Atiyah-Bott formula).
Let us recall that the socle sequence of $V_{\left[p_{1}-r_{1}\right],\left[r_{2}\right]}$ is given as follows.

Then $\tilde{V}_{\left[p_{1}-r_{1}\right],\left[r_{2}\right]}$ has the shape as follows.

$\left.\stackrel{\sim}{\sqrt{[}} \rho_{1}-r_{1}\right],\left[r_{2}\right]$

$H^{0}\left(G \times_{B} \tilde{V}_{\left[p_{1}-r_{1}\right],\left[r_{2}\right]}\right)$

By taking $H^{0}\left(\mathrm{SL}_{2} \times_{B}-\right)$, we obtain the following.

$\tilde{H}^{0}\left(G \times{ }_{B} \tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}\right):=\operatorname{Im} Q^{\left[p_{1}-r_{1}\right]}$

Set $\tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}\right):=\operatorname{Im} Q^{\left[p_{1}-r_{1}\right]}$, which is illustrated as

Then we have

$$
\operatorname{ch}_{q} \tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}\right)^{h=k \varpi}=\operatorname{ch}_{q} H^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{V}_{\left[p_{1}-r_{1}\right],\left[r_{2}\right]}\right)^{h=(k+1) \varpi}
$$

$H^{0}\left(G \times{ }_{B} \tilde{H}^{0}\left(G \times_{B} \tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}\right)\right)$

Since $\tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} V_{\left[r_{1}\right],\left[r_{2}\right]}\right)$ consists a Felder complex again, we take $H^{0}\left(\mathrm{SL}_{2} \times_{B}-\right)$ and obtain $\mathcal{X}_{\left[r_{1}\right],\left[r_{2}\right]}=H^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} V_{\left[r_{1}\right],\left[r_{2}\right]}\right)\right)$.

1
$\begin{array}{lll}3 & 3 & 3\end{array}$

5

$$
h=
$$

4
2
0
-2
-4

Indeed, we have

$$
\begin{aligned}
& \eta(q) \operatorname{ch}_{q} H^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{H}^{0}\left(\mathrm{SL}_{2} \times \tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}\right)\right)^{h=0} \\
= & \sum_{n_{2} \geq 0}\left(\operatorname{ch}_{q} \tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}\right)^{h=2 n_{2}}-\operatorname{ch}_{q} \tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{V}_{\left[r_{1}\right],\left[p_{2}-r_{2}\right]}\right)^{h=2 n_{2}+1}\right) \\
= & \sum_{n_{2} \geq 0}\left(\operatorname{ch}_{q} \tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{V}_{\left[p_{1}-r_{1}\right],\left[r_{2}\right]}\right)^{h=2 n_{2}+1}-\operatorname{ch}_{q} \tilde{H}^{0}\left(\mathrm{SL}_{2} \times_{B} \tilde{V}_{\left[p_{1}-r_{1}\right],\left[p_{2}-r_{2}\right]}\right)^{h=2 n_{2}-}\right. \\
= & \sum_{n_{1}, n_{2} \geq 0}\left(\operatorname{ch}_{q} \tilde{V}_{\left[p_{1}-r_{1}\right],\left[r_{2}\right]}^{h=2 n_{1}+2 n_{2}+1}-\operatorname{ch}_{q} \tilde{V}_{\left[p_{1}-r_{1}\right],\left[p_{2}-r_{2}\right]}^{h=2 n_{1}+2 n_{2}+2}\right) \\
& -\left(\operatorname{ch}_{q} \tilde{V}_{\left[r_{1}\right],\left[r_{2}\right]}^{h=2 n_{1}+2 n_{2}+2}-\operatorname{ch}_{q} \tilde{V}_{\left[r_{1}\right],\left[p_{2}-r_{2}\right]}^{h=2 n_{1}+2 n_{2}+3}\right) \\
= & \sum_{n \geq 0} n\left(q^{\Delta_{p_{1}-r_{1}, r_{2}, 2 n+1}}-q^{\Delta_{p_{1}-r_{1}, p_{2}-r_{2}, 2 n+2}}-q^{\Delta_{r_{1}, r_{2}, 2 n+2}}+q^{\Delta_{r_{1}, p_{2}-r_{2}, 2 n+3}}\right)
\end{aligned}
$$

and it coinsides with $\operatorname{ch}_{q} \mathcal{X}_{\left[r_{1}\right],\left[r_{2}\right]}^{h=0}$.

$\left(1, p_{1} p_{2}\right)-\log \mathrm{VOA}$ v.s. $\left(p_{1}, p_{2}\right)-\log \mathrm{VOA}$

- In the case of $\left(1, p_{1} p_{2}\right)-\log \mathrm{VOA}$, there is only one parameter $[\lambda] \in \Lambda_{p_{1} p_{2}}$, and we consider the Felder complex w.r.t this $[\lambda]$.
- On the other hand, in the case of $\left(p_{1}, p_{2}\right)-\log \mathrm{VOA}$, there are two parameters $\left[\lambda_{1}\right] \in \Lambda_{p_{1}}$ and $\left[\lambda_{2}\right] \in \Lambda_{p_{2}}$, and we apply the theory of Felder complex (or Atiyah-Bott character formula) to $\left[\lambda_{1}\right]$ and $\left[\lambda_{2}\right]$ separately.
- These two Felder complexes are related by the "symmetrization of Felder complex"

$$
\operatorname{ch}_{q} \tilde{H}^{0}\left(G \times_{B} \tilde{V}\right)^{h=k \geq 0}=\operatorname{ch}_{q} H^{0}\left(G \times_{B} \tilde{V}\right)^{h=k+1}
$$

above, and it enables us to the nested-use of Atiyah-Bott character formulae.

- These discussions also holds for

$$
\left(\left[\lambda_{1}\right], \ldots,\left[\lambda_{N}\right]\right) \in \Lambda_{p_{1}} \times \cdots \times \Lambda_{p_{N}}
$$

Nested Felder complex/Feigin-Tipunin's construction

From the above discussion, it is natural to consider the following.

- $p_{1}, \ldots, p_{N} \in \mathbb{Z}_{\geq 2}$: coprime, $p:=p_{1} \cdots p_{N}$.
- $Q_{0}:=\frac{1}{p_{1}}-\frac{1}{p_{2}}-\cdots-\frac{1}{p_{N}}$.
- $V_{\sqrt{p} Q}$: lattice VOA with conformal vector

$$
\omega:=\frac{1}{2} \sum_{1 \leq i, j \leq \mathrm{rankg}} c^{i j} \alpha_{i(-1)} \alpha_{j}+\sqrt{p} Q_{0} \rho_{(-2)} \mathbf{1}
$$

- For $\left[\lambda_{i}\right] \in \Lambda_{p_{i}}$, set

$$
\vec{\lambda}=\left(\left[\lambda_{1}\right], \ldots,\left[\lambda_{N}\right]\right) \in \Lambda_{p_{1}} \times \cdots \times \Lambda_{p_{N}}
$$

- $V_{\vec{\lambda}}:=V_{\sqrt{p}(Q-\hat{\lambda})+\sqrt{p}\left(-\lambda_{1}+\lambda_{2} \cdots+\lambda_{N}\right)}:$ simple $V_{\sqrt{p} Q}$-module ($\hat{\lambda}$; minuscle weight).

Definition (Nested Felder complex/Feigin-Tipunin's construction)

We call $(\underbrace{\tilde{H}^{0}\left(G \times_{B} \cdots \tilde{H}^{0}\left(G \times_{B}\right.\right.}_{0 \leq m \leq N-1} \tilde{V}_{\vec{\lambda}} \cdots))_{[\vec{\lambda}] \in \Lambda_{p}}$ nested Felder complex if
■ For each $0 \leq m \leq N-1, \underbrace{\tilde{H}^{0}\left(G \times_{B} \cdots \tilde{H}^{0}\left(G \times_{B}\right.\right.}_{m} \tilde{V}_{\ldots,\left[\lambda_{N-m]}, \ldots\right.} \cdots)$ consists a Felder complex.

- For $\beta \in P_{+}$and $\sigma \in W$, we have

$$
\begin{aligned}
& \bullet \operatorname{ch}_{q} \tilde{V}_{\vec{\lambda}}^{h=\beta-\epsilon_{\left[\lambda_{N}\right]}(\sigma)}=\operatorname{ch}_{q} V_{\vec{\lambda}}^{h=\beta}, \\
& \bullet \operatorname{ch}_{q} \tilde{H}^{0}\left(G \times_{B} \tilde{V}_{\left[\lambda_{1}\right], \ldots}\right)^{h=\beta}=\operatorname{ch}_{q} \tilde{H}^{0}\left(G \times_{B} \tilde{V}_{\left[w_{0} * \lambda_{1}\right], \ldots}\right)^{h=\beta+\rho}, \\
& \bullet \operatorname{ch}_{q} \underbrace{\tilde{H}^{0}\left(G \times_{B} \cdots \tilde{H}^{0}\left(G \times_{B}\right.\right.}_{m \geq 2} \tilde{V}_{\vec{\lambda}} \cdots)^{h=\beta-\epsilon_{\left[\lambda_{N-m}\right]}(\sigma)} \\
= & \operatorname{ch}_{q} H^{0}(G \times_{B} \underbrace{\tilde{H}^{0}\left(G \times_{B} \cdots \tilde{H}^{0}\left(G \times_{B}\right.\right.}_{m-1} \tilde{V}_{\vec{\lambda}} \cdots)^{h=\beta-\epsilon_{\left[\lambda_{N-m}\right]}(\sigma)+\rho}
\end{aligned}
$$

The second condition above is "symmetrization of Felder complex" or "connection of Felder complex w.r.t $\left[\lambda_{m}\right]$ and that w.r.t $\left[\lambda_{m-1}\right]$ ". Let us recall that a Felder complex is illustreted as

Then the second condition is illustrated is follows.

Figure: $\tilde{H}^{0}\left(G \times_{B} V\right)$ and $H^{0}\left(G \times_{B} V\right)$.

As we see in the case of $N=2$ (i.e. $\left.\left(p_{1}, p_{2}\right)-\log \mathrm{VOA}\right)$, if we regard the pair ($k, k+1$) (or $(k, k+1)$) as weight vectors, then these pictures are regarded as the maximal G-submodule of a (larger) Felder complex.

In the same manner as $N=2$, we obtain the character formula.

Theorem (S)

We have the character formula

$$
\begin{aligned}
& \eta(q)^{\mathrm{rankg}} \operatorname{ch}_{q} H^{0}(G \times_{B} \underbrace{\tilde{H}^{0}\left(G \times_{B} \cdots \tilde{H}^{0}\left(G \times_{B}\right.\right.}_{N-1} \tilde{V}_{\hat{\lambda} ; \lambda_{1}, \ldots, \lambda_{N}}) \cdots)^{h=\hat{\lambda}} \\
= & \sum_{\gamma_{1}, \ldots, \gamma_{N} \geq 0} p\left(\gamma_{1}\right) \cdots p\left(\gamma_{N}\right) \sum_{w_{1}, \ldots, w_{N} \in W}(-1)^{l\left(w_{1}\right)+\cdots+l\left(w_{N}\right)} \\
& \operatorname{ch}_{q} V_{w_{1} * w_{0} * \lambda_{1}, w_{2} * \lambda_{2}, \ldots, w_{N} * \lambda_{N}}^{h=\gamma_{1}+\cdots+\gamma_{N}+\hat{\lambda}+(N-1) \rho-\epsilon_{w_{0} * \lambda_{1}}\left(w_{1}\right)-\sum_{i=2}^{N} \epsilon_{\lambda_{i}}\left(w_{i}\right)},
\end{aligned}
$$

where $p(-)$ is the Kostant's partition function.
In particular, when $\mathfrak{g}=\mathfrak{s l}_{2}$ and $\hat{\lambda}=0$, the character is given by

$$
\sum_{n \geq 0}\binom{n+N-1}{N-1} \sum_{\epsilon_{1}, \ldots, \epsilon_{N} \in\{ \pm 1\}} \epsilon_{1} \cdots \epsilon_{N} q^{\frac{p}{4}\left(2 n+N-\sum_{i=1}^{N} \frac{\epsilon_{i} r_{i}}{p_{i}}\right)}
$$

which coincides with the homological block of $(N+2)$-fibered Seifert manifold!

Conclusion

When $\mathfrak{g}=\mathfrak{s l}_{2}, \operatorname{ch}_{q} H^{0}\left(G \times_{B} \tilde{H}^{0}\left(G \times_{B} \cdots\right)\right)$ is calculated as

- First, we decompose the Fock spaces to 2^{N} types of colors/components.
- We can decompose the colors as $2^{N}=2^{N-1}+2^{N-1}$, where the first 2^{N-1} colors appear symmetric w.r.t. Cartan weight h, but the latter is shifted by -1 . In other words, we obtain a Felder complex w.r.t $\left[\lambda_{N}\right]$.
- By applying $H^{0}\left(G \times_{B}-\right)$, only 2^{N-1} colors that are symmetric w.r.t the Cartan weight h are taken out.
- In $h \geq 0$, it has the same character as a Felder complex w.r.t [λ_{N-1}] consisting of $2^{N-1}=2^{N-2}+2^{N-2}$ colors. So we can compute the character by applying $H^{0}\left(G \times_{B}-\right.$) again (in other words, by taking 2^{N-2} colors that are syemmetric w.r.t the Cartan weight h, again).
- By repeating this procedure, we can take out only one color, which is the desired $\log \mathrm{VOA}(-$ module) of the form

$$
" H^{0}\left(G \times_{B} H^{0}\left(G \times_{B} \cdots H^{0}\left(G \times_{B} \tilde{V}_{\vec{\lambda}} \cdots\right) "\right.\right.
$$

Future work (1)

Let us recall the question above.

Question

Is the theory of Felder complex used to study other $\log V O A s ?$
In other words, how fundamental a position does the theory of $(1, p)-\log V O A$ occupy in the that of $\log V O A s ?$

The following conjecture claims that the theory of Felder complex $/(1, p)-\log \mathrm{VOA}$ is fundamental in that of conjectural \log VOAs corresponding to (Seifert/plumbed) 3-manifolds.

Conjecture

There exists $\log V O A(-$ modules $)$

$$
H^{0}\left(G \times_{B} \tilde{H}^{0}\left(G \times_{B} \cdots \tilde{H}^{0}\left(G \times_{B} \tilde{V}_{\vec{\lambda}} \cdots\right)\right.\right.
$$

(i.e. given by nested Feigin-Tipunin construction) such that the character coincides with the homological block of corresponding Seifert manifold.

Future work (2)

- For $c \leq r$, the limit of $\mathfrak{s l}_{r}$-colored Jones polynomial of the torus link $T(c, c p)$ gives the character of $(1, p)-\log \mathrm{VOA}$ for $\left(\mathfrak{s l l}_{c}, f_{\text {prin }}\right)$.
- On the other hand, the limits of $\mathfrak{s l}_{2}$-colored Jones polynomial of the torus link $T\left(2 p, 2 p^{\prime}\right)$ (minus certain modular form) gives the character of $\left(p, p^{\prime}\right)-\log \mathrm{VOA}$ for $\left(\mathfrak{s l}_{2}, f_{\text {prin }}\right)$.
- So it is expected that the limits of $\mathfrak{s l}_{r}$-colored Jones polynomial of the torus link $T\left(c p, c p^{\prime}\right)$ (minus certain modular form) gives the character of $\left(p, p^{\prime}\right)-\log \mathrm{VOA}$ for $\left(\mathfrak{s l}_{c}, f_{\text {prin }}\right)$, but $\left(p, p^{\prime}\right)-\log \mathrm{VOA}$ is constructed only for the case $r=2$.
- However, we can expect the character of (irreducible modules of) $\left(p, p^{\prime}\right)-\log \mathrm{VOA}$ for $\left(\mathfrak{g}, f_{\text {prin }}\right)$ is given by

$$
\sum_{\gamma_{1}, \gamma_{2} \geq 0} p\left(\gamma_{1}\right) p\left(\gamma_{2}\right) \sum_{w_{1}, w_{2} \in W}(-1)^{l\left(w_{1}\right)+l\left(w_{2}\right)} \operatorname{ch}_{q} V_{w_{1} * w_{0} * \lambda_{1}, w_{2} * \lambda_{2}}^{h=\gamma_{1}+\gamma_{2}+\hat{\lambda}+\rho-\epsilon}\left[w_{0} * \lambda_{1}\right]{ }^{\left(w_{1}\right)-\epsilon}\left[\lambda_{2}\right]\left(w_{2}\right),
$$

and thus we can check the expectation above.

Thank you!

